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1 Abstract

This article develop an electronically controlled bicycle in simulation. It derives
a simplified bicycle model, which can be used to design a linear or non-linear
controller for autonomous bicycle. The accuracy of this model is acceptable
when the bicycle is moving in relative low speed and the handlebar is not steering
very fast. Two controllers are implemented in simulations and the sliding mode
control controller is superior than LQR on performance and robustness.

2 Introduction

We would like to build an electronically controlled bicycle. This could be a
robotic bicycle, or a ‘fly-by-wire’ bicycle in which the balance is managed elec-
trically, with no direct mechanical connection between the rider and the steering.
We would like to develop a controller for such a bicycle in simulation. Because
optimizing a controller might take thousands or millions of simulations, and
because we might want to employ theoretical control theory, it is useful to have
moderately simple equations of motion. Our choices from the literature are re-
viewed in Meijaard et al.(2007). In short, interpretable equations are generally
only linear, and we want a non-linear (large-amplitude) control. And non-linear
equations are complicated and not even expressible in closed form. Also, the
lack of a pure analytic form of the governing equations in the benchmark can
make controller design more difficult. This paper attempts to derive a pure
analytical symbolic expression of a simplified model that can be used to design
linear or nonlinear controllers for electronically controlled bicycle.

But the robotic bicycle has advantages, as far as governing equations go.
We can assume that the steering is controlled separately in an inner, and faster,
control loop. Thus, we don’t need the steer dynamics equations. And the
lean equations can, we think, be well approximated by a simpler model. The
goal of this paper is to describe such a simpler model and possible controls
using this model. We compared the accuracy of the model to the benchmark
of Meijaard et al.(2007). We implemented the controller in the simulation and
tested its performance and robustness. In this article, we did not consider the
self-stability of bicycles, since we assume that the bicycle is balanced by the
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steering control of the handlebars. The speed of the bike is considered a key
parameter and not set to a constant.

In the end, the robustness of the controller can be partially tested by using
it in a more complex, and perhaps more realistic, simulation.

3 Related work

Safety bikes are the direct ancestors of most modern bicycles and they have two
wheels of the same size[2]. Research on the dynamics of bicycles began in the
19th century and they were surprisingly complicated. Many respected scientists
and researchers have studied this, but due to its complexity, different models,
different parameters and different variables, only a few of whom have cross-
checked[1]. Meijaard et al.(2007) reviewed all of these studies and established
benchmarks for bicycle dynamics. They assume an ideal knife-edge rolling point-
contact with horizontal ground. Their solution can be used to inspect other
models. However, when considering the large lean angle and steering angle, the
pitch of the bicycle is the solution of a fourth-order polynomial equation. There
is no pure analytical expression to express the full dynamics of bicycle[1]. They
also derived a well-defined equation for a safe bicycle model and reveals the
stability of a controlled or uncontrolled bicycle. The safety bike has a tilting
steering axis and fork offset, which is very important for balance and control[1].

To balance a bicycle, one can balance a leaned forward-moving bicycle by
steer to the direction of lean. It can move the ground contact point under the
cyclist’s position[1]. Due to the various geometry, inertia and gyroscope char-
acteristics of bicycles, some uncontrolled bicycles can also balance themselves
at some speed. Since many different methods, different coordinates and differ-
ent languages can be used to derive the governing equations for bicycles, it is
difficult to match all the initial conditions of these different methods for cross-
checking. Meijaard et al.(2007) used the Whipple bicycle model, which takes
into account all rigid body effects and omits some subtle effects of the wheel.
The two wheels in the model are different.

4 Small wheel bicycle dynamic model derivation

The goal of this section is to derive a simplified dynamic model that can be used
to design a steering controller. In order to obtain a purely analytical symbolic
expression governing equation, the slight pitch of the bicycle can be ignored.
We assume that the bike has a very small wheel and the bike does not pitch
at all. In addition, we can also assume that the tilt angle of steer axis ζ and
fork offset is zero. The front wheel and handlebar will be turned directly by
the controller. Therefore, in this simplified bicycle dynamics, the moment of
inertia of the front wheels and other geometries, inertia and gyroscopic forces
are negligible.
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Figure 1: Bicycle model parameters

4.1 Parameters of a bicycle

In the model, the bicycle is divided into two parts. The first part is the rear
wheel and the frame. The second part is the front wheel and the front handlebar.
The handlebar is rotatable about the front fork steering axis. Two wheels are
at xz Plane. Wang and Ruina(2014) defined most of these parameters.

See Figure 1: Point G is the Center of Mass. Point A is the intersection of
the frame and the front handlebar. Point B is the point above the rear contact
point of the rear frame and it is at the same height of point G. Point C is the
contact point of the rear wheel and the ground. Point D is the contact point of
the front wheel and the ground. BG = b BC = h CD = l

4.1.1 Direction unit vector

î is the unit vector in the direction of positive x axis. ĵ is the unit vector in the
direction of positive y axis. k̂ is the unit vector in the direction of positive z
axis.

λ̂ is the unit vector in the direction of the heading of rear wheel. It is on
the xy plane. n̂ is the unit vector of the normal direction of the heading of rear
wheel λ̂, pointing to the left side of the bicycle. It is also on the xy plane. Both
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Figure 2: Bicycle dynamic variables

λ̂ and n̂ are perpendicular to k̂.

4.1.2 Steering δ

δ is the steering angle (Figure 2). It is the angle of the front handlebar set
rotates about the front fork axis. In Figure 2, δ = π/8.

4.1.3 Lean φ

φ is the lean angle (Figure 2). The whole bicycle leans about the connection
line between the contact points of front wheel D and rear wheel C. In Figure
2, φ = π/8.

4.1.4 Yaw ψ

ψ is the yaw angle (Figure 2). It is the angle between x axis and the heading
of rear wheel. The whole bicycle yaws about z axis. The heading of the bicycle
î became λ̂ and the normal direction of î, which is ĵ, became n̂. Also, the
whole bicycle will always lean about the new heading, which is λ̂. In Figure 2,
ψ = π/16.

4.1.5 Tilt angle of the steer axis ζ

ζ is the tilt angle of steer axis (Figure 3). The tilt angle of steer axis ζ and
fork offset contributes to the trail and influence the dynamics of a bicycle. In
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Figure 3: Tilt angle of the steer axis

the governing equation, considering the tilt angle of the steering axis ζ does not
increase the accuracy of the model. It will add a constant cos ζ term in the part
of the equation, which will ruin the simplicity of this model.

4.1.6 Other variables

If the tilt angle of steer axis ζ is not equal to zero, and the steering angle is not
equal to zero, the contact point between front wheel and ground will shift on xy
plane. Since the distance between front wheel and rear wheel l is much larger
than the shift distance. Because steering angle δ and lean angle φ are small, we
assume the contact point between front wheel and ground is a fix point. It is the
contact point of a non-steering upright bicycle. So that the whole bicycle will
always leans about λ̂ axis. Also, since the contact point between front wheel
and ground, which is the lowest point on the front wheel, will change due to
steering and lean, the whole bicycle will pitch a little bit and the center of mass
will be lower than the center of mass a upright bicycle. We assume that the
change of height of the center of mass is negligible and the center of mass is
always at the position of the center of mass of a non-steering upright bicycle.

4.2 Front wheel direction

α is the angle between the heading of front wheel and the heading of rear wheel
λ̂ (Figure 2). In order to derive the moving direction of front wheel, we need to
know the kinematic relationship between α, φ and δ. If not considering the tilt
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Figure 4: Heading of front wheel

angle of the steer axis, the relationship between α, φ and δ can be derived by
3D drawings. Wang and Ruina(2014) derived the following method.

See Figure 4: Assume ABCD is the upright bicycle and A′B′CD is the
leaned bicycle. A′H is the direction of the front handlebar in a leaned but not
steering bicycle. A′F is the direction of the front handlebar in a leaned and
steered bicycle. Point F is on the xy plane and it is on the ground. Point E is
also on the xy plane and it is on the x axis. Point E has the same y coordinate
of Point F . Line EF is on the xy plane too. Point H is on the extension line
of B′A′ and plane HEF is perpendicular to B′A′. Because the front fork is
always perpendicular to the plane of handlebar, EH�A′HF . Because the front
fork is also always perpendicular to the heading of rear wheel, DE�EF . α is
the angle between the heading of the front wheel and the heading of the rear
wheel. Based on the spatial relationship, we can get:

FH

EF
= cosφ

FH

A′H
= tan δ

EF

DE
= tanα

Since A′H =DE
tanα = tan δ

cosφ
(1)
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If we consider the tilt angle of the steer axis ζ, the relationship between α,
φ and δ can be derived by 3D rotation. See Appendix A for more details of
derivation. The result of relationship between α, φ and δ is:

tanα = sin δ cos ζ

cos δ cosφ − sin δ sinφ sin ζ
(2)

4.3 Change rate of rear wheel heading yaw angle ψ̇ and ψ̈

See Figure 2, the change rate of yaw angle ψ̇ is relate to the angle α between
the heading of front wheel and the heading of rear wheel. The result accord
with the result in Wang and Ruina(2014)’s report.

vrear = vrear
λ̂

= vfront
λ̂

= v

vfront = v

cosα

vfrontn̂ = vfront ⋅ sinα = v ⋅ tanα

Since
vfrontn̂ = ψ̇ ⋅ l

ψ̇ = v ⋅ tanα

l

So that

ψ̇ = v tanδ

l cosφ
(3)

If considering the tilt angle of the steer axis ζ,

ψ̇ = v sin δ cos ζ

l (cos δ cosφ − sin δ sinφ sin ζ)

For ψ̈,

ψ̈ = ∂ψ̇
∂v

⋅ v̇ + ∂ψ̇
∂δ

⋅ δ̇ + ∂ψ̇
∂φ

⋅ φ̇

So that

ψ̈ = δ̇ v cosφ + v̇ cos δ cosφ sin δ + φ̇ v cos δ sin δ sinφ

l cos δ2 cosφ2
(4)

If considering the tilt angle of the steer axis ζ,

ψ̈ = δ̇ ( v cos δ cos ζ

l (cos δ cosφ − sin δ sinφ sin ζ) +
v sin δ cos ζ (cosφ sin δ + cos δ sinφ sin ζ)

l (cos δ cosφ − sin δ sinφ sin ζ)2
)

+ v̇ sin δ cos ζ

l (cos δ cosφ − sin δ sinφ sin ζ) +
φ̇ v sin δ cos ζ (cos δ sinφ + cosφ sin δ sin ζ)

l (cos δ cosφ − sin δ sinφ sin ζ)2
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4.4 Acceleration of center of mass

Acceleration of center of mass is derived in Wang and Ruina(2014)’s report. We
use the five-terms acceleration equation to rigorously verify it. For the five-term
acceleration equation,

a⃗p = a⃗o′/o + a⃗p/β + ω⃗ × (ω⃗ × r⃗p/o′) + ˙⃗ω × r⃗p/o′ + 2 ω⃗ × v⃗p/β (5)

p is the point we are interested in. o is the origin. ω⃗ is the angular velocity
vector. For each term in the equation,

⃗vo′/o = v ⋅ λ̂

a⃗o′/o =
d

dt
v⃗o′/o =

d

dt
(v λ̂) = v̇ λ̂ + v ˙̂

λ = v̇ λ̂ + v ω⃗ × λ̂ = v̇ λ̂ + v ψ̇ k̂ × λ̂ = v̇ λ̂ + v ψ̇ n̂

êr = cosφ k̂ + sinφ n̂

êφ = − sinφ k̂ + cosφ n̂

˙̂eφ = −φ̇ êr
v⃗p/β = φ̇ r êφ

a⃗p/β =
d

dt
v⃗p/β =

d

dt
(φ̇ r êφ) = φ̈ r êφ + φ̇ r ˙̂eφ = φ̈ r êφ + φ̇ r φ̇ (−êr) = r φ̈ êφ − φ̇2rêr

r⃗p/o′ = b λ̂ + h êr
ω⃗ = ψ̇ k̂

˙⃗ω = d

dt
(ψ̇ k̂) = ψ̈ k̂ + ψ̇ ˙̂

k = ψ̈ k̂

Substitute these terms into five terms acceleration equation (Equation (5)), we
can get

a⃗G = a⃗p = (−b ψ̇2 − 2h φ̇ cosφ ψ̇ + v̇ − h ψ̈ sinφ) λ̂ + (−h sinφ φ̇2

−h sinφ ψ̇2 + v ψ̇ + b ψ̈ + h φ̈ cosφ) n̂ + (−h (cosφ φ̇2 + φ̈ sinφ)) k̂
(6)

The result accord with the result in Wang and Ruina(2014)’s report.

4.5 Moment of inertia of the bicycle

The moment of inertia of the handlebar is relative small compare to rear body
and frame assembly of bicycle and we assume that the steering is controlled
separately. Thus, we don’t need the steer dynamics equations. We assume the
moment of inertia of the bicycle is not changing relative to body frame. Most
parts of a bicycle are located on the xz plane, so we define the initial moment
of inertia of the bicycle I0 as

I0 =
⎡⎢⎢⎢⎢⎢⎣

I1 0 I13
0 I2 0
I13 0 I3

⎤⎥⎥⎥⎥⎥⎦
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For rotation matrix of leaning,

R =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎤⎥⎥⎥⎥⎥⎦
The moment of inertia of the bicycle I is

I = R ⋅ I0 ⋅RT

=
⎡⎢⎢⎢⎢⎢⎣

I1 I13 sinφ I13 cosφ

I13 sinφ I2 cosφ2 + I3 sinφ2 I3 cosφ sinφ − I2 cosφ sinφ

I13 cosφ I3 cosφ sinφ − I2 cosφ sinφ I3 cosφ2 + I2 sinφ2

⎤⎥⎥⎥⎥⎥⎦

4.6 Angular momentum balance

For angular momentum balance of an object in 3D,

M⃗/C = ˙⃗H/C′ (7)

c’ is a good point. It is a fix point instantaneous at the same position of c.

M⃗/C = r⃗G/C ×mtot g (−k̂) + r⃗D/C × F⃗D (8)

H⃗/C′ = r⃗G/C′ ×mtot
v⃗G + H⃗/G

H⃗/G = ⃗⃗I ⋅ ω⃗
˙⃗H/C′ = v⃗G/C′ ×mtot

v⃗G + r⃗G/C′ ×mtot
a⃗G + ˙⃗H/G

Since
˙⃗Q
f

= ˙⃗Q
β

+ ω⃗ × Q⃗
v⃗G/C′ ×mtot

v⃗G = 0

Then
˙⃗H/C′ = r⃗G/C′ ×mtot

a⃗G + ⃗⃗I ⋅ ˙⃗ω + ω⃗ × ( ⃗⃗I ⋅ ω⃗) (9)

Since
r⃗D/C = l λ̂

r⃗D/C ∥ λ̂

r⃗D/C × F⃗D�r⃗D/C
(r⃗D/C × F⃗D) ⋅ λ̂ = 0

Computer dot product of λ̂ and both sides of Equation (7). Substitute Equation
(9) and Equation (8) into Equation (7),

M⃗/C ⋅ λ̂ = ˙⃗H/C′ ⋅ λ̂
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r⃗G/C ×mtot g (−k̂) ⋅ λ̂ = r⃗G/C′ ×mtot
a⃗G ⋅ λ̂ + ⃗⃗I ⋅ ˙⃗ω ⋅ λ̂ + ω⃗ × ( ⃗⃗I ⋅ ω⃗) ⋅ λ̂ (10)

(r⃗D/C × F⃗D) ⋅ λ̂ can be ignore. We can get rid of F⃗D. For the total rotation,

ω⃗ = ψ̇ k̂ − φ̇ λ̂

˙̂
λ = ψ̇ n̂

˙⃗ω = ψ̈ k̂ − φ̈ λ̂ − φ̇ ˙̂
λ = ψ̈ k̂ − φ̈ λ̂ − φ̇ ψ̇ n̂

For r⃗G/C′ and r⃗G/C ,

r⃗G/C′ = r⃗G/C = b λ̂ + h êr

For ˙⃗H/G

˙⃗H/G = d

dt
( ⃗⃗I ⋅ ω⃗) = ⃗⃗I ⋅ ˙⃗ω + ω⃗ × ( ⃗⃗I ⋅ ω⃗) = (a) λ̂ + (b) n̂ + (c) k̂ (11)

In Equation (11),

a = ψ̇ (ψ̇ (I2 cosφ sinφ − I3 cosφ sinφ) + I13 φ̇ sinφ) − I1 φ̈ + I13 ψ̈ cosφ

−I13 φ̇ ψ̇ sinφ

b = φ̇ (ψ̇ (I3 cosφ2 + I2 sinφ2) − I13 φ̇ cosφ) − ψ̇ (I1 φ̇ − I13 ψ̇ cosφ) − I13 φ̈ sinφ

−ψ̈ (I2 cosφ sinφ − I3 cosφ sinφ) − φ̇ ψ̇ (I2 cosφ2 + I3 sinφ2)

c = φ̇ (ψ̇ (I2 cosφ sinφ − I3 cosφ sinφ) + I13 φ̇ sinφ) + ψ̈ (I3 cosφ2 + I2 sinφ2)
+φ̇ ψ̇ (I2 cosφ sinφ − I3 cosφ sinφ) − I13 φ̈ cosφ

Replace ψ̇ and ψ̈ by Equation (3) and Equation (4) into Equation (6), we can
get expression of a⃗G without ψ̇ and ψ̈ term. Substitute a⃗G by new Equation (6)

and substitute ˙⃗H/G by Equation (11) into Equation (10), we can get the final
governing equation.

I1 φ̈ + h2mφ̈ − g hm sinφ + I2 v
2 sinφ

l2 cosφ
− I3 v

2 sinφ

l2 cosφ
− I13 δ̇ v

l cos δ2
− I13 v̇ sin δ

l cos δ

+h
2mv2 sinφ

l2 cosφ
− I2 v

2 sinφ

l2 cos δ2 cosφ
+ I3 v

2 sinφ

l2 cos δ2 cosφ
+ hmv2 sin δ

l cos δ
+ b δ̇ hmv

l cos δ2

− h
2mv2 sinφ

l2 cos δ2 cosφ
+ bhm v̇ sin δ

l cos δ
− I13 φ̇ v sin δ sinφ

l cos δ cosφ
+ bhm φ̇ v sin δ sinφ

l cos δ cosφ
= 0

(12)
Linearize the governing equation by

sinφ = φ cosφ = 1 sin δ = δ cos δ = 1 sinψ = ψ cosψ = 1
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And then times l
mh

. We can get

δ v2 + b δ̇ v + b δ v̇ − g l φ + h l φ̈ − I13 δ̇ v
hm

− I13 δ v̇
hm

+ I1 l φ̈
hm

+ b δ φ φ̇ v − I13 δ φ φ̇ v
hm

= 0

Since δ and φ are assumed to be very small, ignore terms with δ ⋅ φ, δ2 and φ2:

δ v2 + b δ̇ v + b δ v̇ − g l φ + h l φ̈ − I13 δ̇ v
hm

− I13 δ v̇
hm

+ I1 l φ̈
hm

= 0

By Solving the equation, we get

φ̈ = g l φ

h l + I1 l
hm

− b δ̇ v

h l + I1 l
hm

− b δ v̇

h l + I1 l
hm

− δ v2

h l + I1 l
hm

+ I13 δ̇ v

lmh2 + I1 l
+ I13 δ v̇

lmh2 + I1 l
(13)

If considering the tilt angle of the steer axis ζ, the result will become

φ̈ = g l φ

h l + I1 l
hm

− δ v
2 cos ζ

h l + I1 l
hm

− b δ̇ v cos ζ

h l + I1 l
hm

− b δ v̇ cos ζ

h l + I1 l
hm

+ I13 δ̇ v cos ζ

lmh2 + I1 l
+ I13 δ v̇ cos ζ

lmh2 + I1 l
(14)

5 Accuracy of the simplified model

In order to test the accuracy of this simplified model, we compare it with the
benchmark derived by Meijaard et al.(2007). We did a numerical comparison
with a full non-linear simulation. In the full non-linear simulation, the forward
speed is set to be a various constant. So all v̇ terms need to be neglect. The
benchmark is as follows.

Mq̈ +C1 q̇ v + q (K2 v
2 +K0 g) = f (15)

Where q = [φ, δ]T and f = [Tφ, Tδ]T . Since Tδ is steering torque, which will
cause a clockwise (looking down) action of the handlebar assembly[1]. It would
be the torque that a rider or a motor applies to the handlebar in our model.
We cannot use the second equation in the benchmark because Tδ is unknown.
Since Tφ is the right lean torque, which will cause the bicycle to lean[1]. We
can assume Tφ to be 0. We can use the first equation of the benchmark. For
M, K0, K2 and C1,

M = [ 80.81722 2.31941332208709
2.31941332208709 0.29784188199686

]

K0 = [ −80.95 −2.59951685249872
−2.59951685249872 −0.80329488458618

]

K2 = [0 76.59734589573222
0 2.65431523794604

]

C1 = [ 0 33.86641391492494
−0.85035641456978 1.68540397397560

]
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Substitute M, K0, K2 and C1 into Equation (15), we can get

2.3194 δ̈ + 80.817 φ̈ − 80.95 g φ + 33.866 δ̇ v − 1.0 δ (2.5995 g − 76.597 v2) = 0.0

Since we assume we can control the change rate of steering δ̇ directly, δ̈ is assume
to be 0. Solve the equation about φ̈, and we get

φ̈ = −0.9478 δ v2 − 0.419 δ̇ v + 0.03217 δ g + 1.002 g φ (16)

For the simplified model, we use all the parameters based on the benchmark.

v̇ = 0

l = 1.02

b = 0.3

h = 0.9

m = 94

I1 = 9.2

I13 = 2.4

Solve the equation about φ̈, we can get

φ̈ = −0.9719 δ v2 − 0.264 δ̇ v + 0.9913 g φ (17)

Compare Equation (16) and Equation (17), the error of δ v2 term is 2.5% and
the error of g φ term is 1.0%. There is no δ g term in the linearized equation
of simplified model, but the coefficient of δ g term is 0.03, which is relative
small. The error of δ̇ v term is 36%, which is relative large. The reason of
this happening is that in the simplified model, the moment of inertia of the
handlebar is not considered. So the effect of δ̇ is not considered. The simplified
model will be more accurate when the bicycle is moving in relative low speed
and the handlebar is not rotating very fast. If we use following conditions,

g = 9.81

φ = 0.2

δ = 0.2

v = 2

δ̇ = 0.2

The result of φ̈ is φ̈ = 1.0619 by Equation (17) and φ̈ = 1.1025 by Equation (16).
The error is 3.7%.

If considering the tilt angle of the steer axis ζ and substitute ζ = π/10, the
equation of φ̈ become

φ̈ = −0.9243 δ v2 − 0.2511 δ̇ v + 0.9913 g φ (18)

Compare Equation (18), Equation (16) and Equation (17). We found that
considering the tilt angle of the steer axis ζ only let the δ v2 term become more
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accurate a little bit, but δ g term and δ̇ v term are still not accurate. The result
of δ̈ at low speed and low steering speed is δ̈ = 1.1051 by Equation (18) and the
error is 0.2%.

Based on previous analysis, the tilt angle of the steer axis ζ can be ignore
since it doesn’t improve a lot on the accuracy of the whole dynamic model and
the governing equation. All the following control algorithms are derived without
the tilt angle of the steer axis ζ.

6 Controller design

Since there are multiple variables in the governing Equation (13), we imple-
mented state space form to design the controller.

6.1 State space form

For state space form,
ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

We assume the system is fully observable, so that y(t) = x(t). Base on the
equation,

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ

φ̇
δ
v

⎤⎥⎥⎥⎥⎥⎥⎥⎦

u(t) = [δ̇
v̇
]

For doing linearization about nominal state of a system, assume nominal state
is x0 and u0,

ẋ = f(x,u, t) ≈ f(x0,u0, t) +
∂f

∂x
∣
x0,u0,t

(x − x0) +
∂f

∂u
∣
x0,u0,t

(u − u0) (19)

In Equation (19), the equilibrium state is

x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ0
φ̇0
δ0
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

u0 = [δ̇0
v̇0

]

∆x(t) and ∆u(t) are defined as

∆x(t) = x(t) − x0

14



∆u(t) = u(t) − u0

So that the equation can be represent by

∆ẋ = F(t)∆x(t) +G(t)∆u(t) (20)

In Equation (20), F(t) and G(t) can be derived as

F(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
g l

h l+ I1 l

hm

0 I13 v̇0
lmh2+I1 l −

b v̇0
h l+ I1 l

hm

− v0
2

h l+ I1 l

hm

I13 δ̇0
lmh2+I1 l −

2 δ0 v0
h l+ I1 l

hm

− b δ̇0
h l+ I1 l

hm

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

G(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
I13 v0

lmh2+I1 l −
b v0

h l+ I1 l

hm

I13 δ0
lmh2+I1 l −

b δ0
h l+ I1 l

hm

1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

6.2 Linear–quadratic regulator

Using LQR (linear–quadratic regulator), we can find the most optimal control
to operate a dynamic system. It has minimum cost when the cost is described
as a quadratic function.

6.2.1 Controller design

For the parameters and the equilibrium state,

l = 1.02

b = 0.3

h = 0.9

m = 94

I1 = 9.2

I13 = 2.4

g = 9.81

φ0 = 0

φ̇0 = 0

δ0 = 0

v0 = 2

δ̇0 = 0

v̇0 = 0

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0 0 0
9.7249 0 −3.8876 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−0.52799 0

1.0 0
0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
For the cost function, the quadratic cost function is defined as

J =
t1

∫
t0

(∆xTQ∆x +∆uTR∆u)dt

Let two coefficient matrix be identity matrix,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0 0 0
0 1.0 0 0
0 0 1.0 0
0 0 0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R = [1.0 0
0 1.0

]

Solve the continuous-time algebraic Riccati equation,

FTx + xF − xGR−1GTx +Q = 0

Solution is

C = [−14.77 −4.8301 4.8274 0
0 0 0 1.0

]

Based on the physics analysis of the bicycle by Meijaard et al.(2007), there
is no first-order change in speed due to lean, and speed change alone cannot
cause lean[1]. We could design two decoupled controllers for speed and steering
control. This gain matrix C accord with this demand. The input for the
controller is

∆u = −C∆x (23)

6.2.2 Evaluation: recovery from leaning

To evaluate the linear feedback controller, we can first test whether it can recover
a bicycle from a leaning state to the upright equilibrium state by traversal of
different initial condition with different lean angle and steering angle. The
criterion for recovery failure is that steering angle or lean angle is greater than
1 rad, or after 10 seconds the absolute value of lean angle is still greater than
0.01. See Figure 5 for result.

As is shown in Figure 5, the LQR controller cannot recover the bicycle from
leaning state to upright position when the rear wheel speed is lower than 1.8 m/s.
The LQR controller starts being able to recover the bicycle from leaning state
to upright position after the rear wheel speed exceed 1.8 m/s, and the maximum
lean angle reach 0.3 rad when the speed of rear wheel is 1.91 m/s. After the
rear wheel speed exceed 2 m/s, the maximum lean angle growth gradually and
the growing speed of maximum lean angle is decreasing. The simplified model
will be more accurate at lower speed and smaller angle.
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Figure 5: Maximum Lean Angle for Recovering from Leaning

6.2.3 Evaluation: steady turn

To keep the bicycle doing a steady turn, since we derived the state space form
from linearized governing Equation (13), we cannot calculate a new gain matrix
based on the new equilibrium state. So we still use the same gain matrix to
test the maximum lean angle and steering angle for the bicycle to do a steady
turn. The criteria for failing to keep the bicycle doing a steady turn is that the
difference between the actual lean angle and the desired lean angle is greater
than 0.1, or after 10 seconds the change rate of lean angle is still greater than
0.000001. See Figure 6 for result.

As is shown in Figure 6, the LQR controller cannot keep the bicycle doing a
steady turn with rear wheel speed less than 1.8 m/s. The LQR controller starts
being able to keep the bicycle doing a steady turn with rear wheel speed greater
than 1.8 m/s. The maximum lean angle of steady turn keep increasing when
the rear wheel speed increasing. For the maximum steering angle to keep the
bicycle to do a steady turn, it reach its maximum at 2.4 m/s. Because a large
steering angle will cause a even larger increase of lean angle with a factor of v2,
the maximum steering angle start decreasing after speed exceed 2.4 m/s.
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Figure 6: Maximum Lean and Steering Angle for Steady Turn

6.2.4 Evaluation: robustness

When the observation of the state of the bicycle is inaccurate, the controller may
fail due to the offset. The robustness of the controller become very important.
The criteria for failing to recover is that the steering angle or the lean angle is
greater than 1 rad, or after 10 seconds the absolute value of lean angle change
rate is still greater than 0.01. The rear wheel speed is 2 m/s. See Figure 7 for
result.

As is shown in Figure 7, the robustness of the LQR controller is not very
good. The controller cannot balance the bicycle if the error of lean angle exceed
0.04 rad. When the lean angle is accurate, the maximum error for steering angle
is 0.13 rad.

6.3 Sliding mode control

In order to solve the problems in LQR controller, a non-linear controller, sliding
mode control, was implemented. In control systems, sliding mode control, or
SMC, is a nonlinear control method that alters the dynamics of a nonlinear
system by application of a discontinuous control signal that forces the system to
”slide” along a cross-section of the system’s normal behavior[4]. For Lyapunov
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Figure 7: Maximum Lean and Steering Angle Error for Balancing

Stability[5]:
V (x) = 0 if and only if x = 0

V (x) > 0 if and only if x ≠ 0

V̇ (x) < 0 for all values of x ≠ 0

Consider a plant with single input u:

s (x) = c1x1 + c2x2 + . . . + cnxn

If we choose feedback control law u so that

ṡ (x) < 0 when s (x) > 0

and
ṡ (x) > 0 when s (x) < 0

We can find V (x) as:

V (x) = 1

2
s2 (x)

V̇ (x) = sT (x) ⋅ ṡ (x) < 0

The system is stable. s (x) is called sliding surface. To design the controller u,
we can first solve the equation ṡ (x) = 0 and solve the u as ueq. After that we can
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add a uvss term to ueq as the finial input u to ensure V̇ (x) = sT (x) ⋅ ṡ (x) < 0.
uvss stands for Variable Structure System. Ideally,

uvss = u0 ⋅ sgn(s (x))

In order to be easily implemented, use the following expression to replace sign
function:

uvss = kvssξ (s (x))
Where

ξ (s) = s (x)
∣s (x)∣ +∆

∆ is a very small positive constant.

6.3.1 Controller design

Since there is no first-order change in speed due to lean, also speed change alone
cannot cause lean as well[1], We designed a decoupled controllers for steering
using sliding mode control. Speed control can be design by another simple
controller. For the error between the current state and desired state is e:

e1 = x̂1 − x1

e2 = x̂2 − x2
s (x) = c1e1 + c2e2

x2 = ẋ1
s (x) = c1e1 + c2ė1

Let c1
c2

= c,
s (x) = ce1 + ė1
ṡ (x) = cė1 + ë1
û = ueq + uvss

uvss = kvssξ (s)

ξ (s) = s

∣s∣ + δ

So for the lean angle φ and desired lean angle φ̂,

eφ = φ̂ − φ

sφ = ėφ + cφ eφ

ṡφ = ¨̂
φ − φ̈ + cφ ėφ = 0 (24)
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By solving Equation (12), we can get φ̈ as

φ̈ = I13 v̇ sin δ

lm cos δ h2 + I1 l cos δ
− I2 v

2 sinφ

m cosφh2 l2 + I1 cosφ l2
+ I3 v

2 sinφ

m cosφh2 l2 + I1 cosφ l2

+ I13 δ̇ v

lmh2 cos δ2 + I1 l cos δ2
+ I2 v

2 sinφ

m cosφh2 l2 cos δ2 + I1 cosφ l2 cos δ2

− I3 v
2 sinφ

m cosφh2 l2 cos δ2 + I1 cosφ l2 cos δ2
+ g hm sinφ

mh2 + I1
− hmv2 sin δ

lm cos δ h2 + I1 l cos δ

− h2mv2 sinφ

m cosφh2 l2 + I1 cosφ l2
+ h2mv2 sinφ

m cosφh2 l2 cos δ2 + I1 cosφ l2 cos δ2

− bhm v̇ sin δ

lm cos δ h2 + I1 l cos δ
+ I13 φ̇ v sin δ sinφ

lm cos δ cosφh2 + I1 l cos δ cosφ

− b δ̇ hmv

lmh2 cos δ2 + I1 l cos δ2
− bhm φ̇ v sin δ sinφ

lm cos δ cosφh2 + I1 l cos δ cosφ
(25)

Substitute Equation (25) into Equation (24), we can get the finial controller uφ
as

ueqφ = δ̇

û = ueqφ + kvssφ ξ (sφ)

ξ (sφ) =
s

∣s∣ +∆φ

Where kφ and ∆φ are two constant. In our implementation, kφ = −30, ∆φ = 1
and cφ = 100.

6.3.2 Evaluation: recovery from leaning

Similar to LQR, we can evaluate the controller by whether it can recover form
leaning position. The criteria for failing to recover is that steering angle or lean
angle is greater than 1 rad, or after 10 seconds the absolute value of lean angle
is still greater than 0.01. See Figure 8 for result.

As is shown in Figure 8, the controller starts to be able to recover the
bicycle from leaning position when the speed is greater than 0.2 m/s. The
maximum lean angle for recovering from leaning increases as the rear wheel
speed increasing. The performance is better than LQR.

6.3.3 Evaluation: steady turn

Similar to LQR, we can evaluate the controller by whether it can keep the
bicycle to do a steady turn. The criteria for failing to keep steady turn is that
the difference between the actual lean angle and the desired lean angle is greater
than 0.1, or the steering angle or the lean angle is greater than 1 rad, or after
10 seconds the change rate of lean angle rate is still greater than 0.000001. See
Figure 9 for result.
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Figure 8: Maximum Lean Angle for Recovering from Leaning

As is shown in Figure 9, the controller starts to keep the bicycle to do a
steady turn after the rear wheel speed exceed 0.3 m/s. The maximum lean
angle for steady turn is keep increasing as the rear wheel speed rising. The
maximum steering angle overshoots the upper boundary, 1 rad, and it starts
decreasing as the rear wheel speed rising. The performance is better than LQR.

6.3.4 Evaluation: robustness

Similar to LQR, we can evaluate the controller by whether it can still keep
balanced when the state observation is not accurate. The criteria for failing to
recover is that the steering angle or the lean angle is greater than 1 rad, or after
10 seconds the absolute value of lean angle change rate is still greater than 0.01.
The rear wheel speed is 2 m/s. See Figure 10 for result.

As is shown in Figure 10, the bicycle can still be balanced when the error
of lean angle error is 0.33 rad. The error of steering angle has almost no effect
when the error is less than 0.4. The bicycle can almost not be balanced when
the error is greater than 0.6 rad. The robustness is much better than LQR
controller.
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Figure 9: Maximum Lean and Steering Angle for Steady Turn

6.4 Simulation and animation

We simulated and animated the bicycle in MATLAB. See Figure 11 for ani-
mation result. All the MATLAB codes can be found at github.com/zhidiyang.

6.5 Conclusion for controllers

Based on the evaluation of two controllers, the non-linear controller, sliding
mode control, is superior to the LQR controller. It can control the bicycle to
recover to upright position or keep the bicycle doing a steady turn, at a relative
lower speed. The robustness of it is much better than the LQR controller, which
is very important in real life implementation. But the sliding mode control
controller needs higher commanding rate for the change rate of steering and
it requires better motor. Also the non-linear controller is designed based on
this simplified model and simulated in the same model. The result will not as
good as current result if we test it in the benchmark. The influence of delay in
the system is not considered and it might also influence the robustness of the
controllers.
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Figure 10: Maximum Lean and Steering Angle Error for Balancing

7 Conclusion

This article derives a simplified bicycle model, which can be used to design a lin-
ear or non-linear controller for autonomous bicycle. We compared the accuracy
of the model with Meijaard et al.(2007)’s benchmark. The result shows that the
simplified model accuracy is acceptable when the bicycle is moving in relative
low speed and the handlebar is not steering very fast. We implemented two
controllers in simulations and tested the performance and robustness of it. The
sliding mode control controller is superior than LQR on performance and ro-
bustness, but it needs more agile commands and it can be more computationally
expensive.

A Front wheel direction with ζ

Assume the radius of the wheel is r. l is the distance between front and rear
wheel. Find two point P and Q. P is the center of front wheel. Q is another
point outside the plane of the front wheel. PQ�the plane of the front wheel. r is
the trail of the front wheel. I define it as the distance between P and the point
on the front fork, which has same height as point P . Point C is the rotation
center of point P and Q. For point P and Q, xP yP zP and xQ yQ zQ is the
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Figure 11: Simulation and Animation in MATLAB

coordinate of two points. Use X to represent the coordinate of two points. Use
C to represent the coordinate the rotation center.

X =
⎡⎢⎢⎢⎢⎢⎣

xP xQ
yP yQ
zP zQ

⎤⎥⎥⎥⎥⎥⎦
So based on the spatial relationship,

X =
⎡⎢⎢⎢⎢⎢⎣

l l
0 1
r r

⎤⎥⎥⎥⎥⎥⎦

C =
⎡⎢⎢⎢⎢⎢⎣

l − c l − c
0 0
r r

⎤⎥⎥⎥⎥⎥⎦
For steering, the rotation axis,

n̂ =
⎡⎢⎢⎢⎢⎢⎣

− sin ζ
0

cos ζ

⎤⎥⎥⎥⎥⎥⎦
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The rotation matrix R,

R =
⎡⎢⎢⎢⎢⎢⎣

sin ζ2 − cos δ (sin ζ2 − 1) − sin δ cos ζ cos δ cos ζ sin ζ − cos ζ sin ζ
sin δ cos ζ cos δ sin δ sin ζ

cos δ cos ζ sin ζ − cos ζ sin ζ − sin δ sin ζ cos ζ2 − cos δ (cos ζ2 − 1)

⎤⎥⎥⎥⎥⎥⎦

X′ = R ⋅ (X −C) +C =
⎡⎢⎢⎢⎢⎢⎣

l − c cos ζ2 + c cos δ cos ζ2 l − sin δ cos ζ − c cos ζ2 + c cos δ cos ζ2

c sin δ cos ζ cos δ + c sin δ cos ζ
r − c (cos ζ sin ζ − cos δ cos ζ sin ζ) r − sin δ sin ζ − c (cos ζ sin ζ − cos δ cos ζ sin ζ)

⎤⎥⎥⎥⎥⎥⎦
For leaning, the rotation matrix R,

R =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎤⎥⎥⎥⎥⎥⎦

X′′ = R ⋅X′

ÐÐÐ→
P ′′Q′′ =

⎡⎢⎢⎢⎢⎢⎣

sin δ cos ζ
sin δ sinφ sin ζ − cos δ cosφ
cos δ sinφ + cosφ sin δ sin ζ

⎤⎥⎥⎥⎥⎥⎦

Since
ÐÐÐ→
P ′′Q′′ is perpendicular to the front wheel,

ÐÐÐ→
P ′′Q′′�DF
ÐÐÐ→
P ′′Q′′ ⋅ÐÐ→DF = 0

tanα = sin δ cos ζ

cos δ cosφ − sin δ sinφ sin ζ

If ζ = 0,

tanα = sin δ

cos δ cosφ
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